
J .  Fluid Mech. (1965), vol. 22, part 3, pp. 579-586 

Printed in Great Britain 
579 

Gravitational instability of a viscous fluid in a 
magnetic field 

By CHIA-SHUN YIH 
Department of Engineering Mechanics, University of Michigan 

(Received 16 November 1964) 

The instability of a viscous fluid between two infinite vertical plates and heated 
from below in the presence of a magnetic field perpendicular to the plates is 
investigated, and the most critical stability boundary in the space of the Rayleigh 
number R, Hartmann number M ,  and the horizontal wave number a is deter- 
mined. It is found that the most unstable mode is a symmetric mode with zero 
wave-number, and that for any M the fluid is unstable for any non-zero R, 
however small. 

1. Introduction 
The problem studied concerns the stability of a viscous fluid contained between 

two vertical infinite plates and heated from below in the presence of a uniform 
magnetic field perpendicular to the plates. The mean temperature field is given 

T = T , + ~ z ,  (1) 
by 

with z measured vertically upward, and /3 indicating the (negative) vertical 
gradient of the temperature. The mean density is then 

F = Po(l -a/%, (2) 

(3) 

in which 01 is the thermal expansivity. The gradient of the hydrostatic pressure 
j i  is then 

in which g is the gravitational acceleration. The quantities To andp, are the values 
of T and p at z = 0. The only component of the magnetic field when the fluid is 
undisturbed is Bz, which is in the direction normal to the plates. Its magnitude 
is denoted by H,. The direction of y is therefore horizontal and parallel to the 

The problem with zero magnetic field has been considered by Ostrach (1955), 
Yih (1959), and Wooding (1960). Ostrach considered purely vertical motion. 
Yih considered the stability of disturbances with wavelengths in the z-direction, 
proved the validity of the principle of exchange of stabilities, and showed that 
the most unstable mode is the one with infinite wavelength, or zero wave-number 
in the direction of the vertical. The results of Ostrach and Yih, for both symmetric 
and antisymmetric convection, are actually in agreement, although Yih did not 
realize that the number 31.29 for antisymmetric convection had already been 
given in Ostrach’s paper. However, Wooding (1960) showed that both Ostrach 

djildz = - gpo( 1 -a@), 

plates. 
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and Yih had missed the most unstable mode. By considering motion in the y- 
direction he showed that, for motion symmetric with respect to x, the critical 
Rayleigh number (to be defined later in this paper) is indeed zero, corresponding 
to zero wave-number in the y-direction. Zero indeed is a root of the secular equa- 
tion obtained by Ostrach and Yih for symmetric convection. But its significance 
escaped them both! 

Wooding gave, for the case of zero magnetic field, an expansion of the Rayleigh 
number in powers of the wave-number in the y-direction, here indicated by a 
to distinguish it from the customary symbol a for the thermal expansivity, 

R = 3a2(1 + & a 2 + O ( a 4 ) ) .  (4) 

Wooding’s demonstration that the fluid is unstable for all Rayleigh numbers is 
beyond doubt, so long as the plates are infinite in the y-direction. 

R 

FIGURE 1. The solid line is the true stability boundary for Af = 0. 
The broken line is Dunwoody’s stability boundary. 

The problem stated in this section has been studied by Dunwoody (1964). 
His results for symmetric convection are given in broken lines in figure 1 for the 
case of zero magnetic field and in figure 2 for the case of a non-zero magnetic 
field (with M indicating the Hartmann number and a = 0 in this case). It is clear 
that Dunwoody’s curves do not pass through the origin and that his results are a t  
variance with Wooding’s finding. Dunwoody regards Wooding’s result for 
a = 0 and H, = 0 (or M = 0 )  as correct. But he seems to consider that result to be 
an isolated incident, and has ignored the expansion (4) entirely. The ‘stable’ 
regions in his figures 2 and 4 are not stable regions if Wooding’s results are correct. 
If, as Dunwoody agrees, the fluid is incipiently unstable at R = 0 and M = 0, 
how can it be stable for M = 0 and 0 < R < 337.6, as indicated by his figures 2 
and 41 To put it another way, how can R jump from zero (given in Dunwoody’s 
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table 1)  to 237.6+0(s2) as a changes from zero to s? Or from zero (given in 
Dunwoody’s table 2) to 237.6 + O(s2) as M changes from zero to € 2  These jumps 
are indicated in his figures 2 and 4, and implied in his tables 1 and 2. 

These puzzling points led the writer to investigate the present problem anew. 
I t  will be shown that Dunwoody missed the most unstable mode of symmetric 
convection, that the results for that mode are consistent with Wooding’s finding 
for M = 0, and that, contrary to Dunwood’s conclusion, the most critical 
symmetric mode is more unstable than the most critical antisymmetric mode. 
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FIGURE 2. The M-axis is the stability boundary for a = 0. 
The broken line is Dunwoody’s stability boundary. 

2. The governing differential system 
Since some of the equations in Dunwoody’s formulation of the mathematical 

problem will be referred to in this discussion, the key equations in his paper will 
be reproduced here. There will be a slight change in notation. The wave-number 
will be denoted by a instead of a, the thermal expansivity by a instead of 4, and 
the bars over a symbol denote mean quantities here rather than dimensionless 
variables. In  the following, 2d denotes the spacing of the plates, v the kinematic 
viscosity, K the thermal diffusivity, t the time, T‘ the temperature perturbation, 
w the vertical velocity, p‘ the pressure perturbation, and H, the vertical com- 
ponent of the magnetic field. Dunwoody assumes that the velocity components 
u and v in the directions of x and y are zero, that the only component of the in- 
duced magnetic field is H,, so that 

H, = H,, Hu = 0. (5) 
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Furthermore, the perturbation quantities w, T', and H, are supposed indepen- 
dent of z, and the co-ordinates 

will be used without the accents. The exponential time factor will be assumed 
for the perturbation quantities, so that 

However, II must be zero, for otherwise p' will be infinite at z = & a, violating 
the basis of the linear theory. (This rules out the Hartmann flow, which would 
otherwise be a perfectly acceptable solution of (7), (8), and (9) below, for h = 0 
and R = 0, as a possible neutral mode.) 

The linearized equations of motion in the z-direction, of thermal diffusion, 
and, for the magnetic field are then 

(7) 

m e  = we- w, (8) 

P;W = Y V ~ H  + a wlax, (9) 

aH 
hW = - R B + V z W + v M 2 ~ ,  

in which 7 = (477pu~)-l is the ratio of the magnetic diffusivity to thermal diffusi- 
vity, P = v/K is the Prandtl number, and M2 = cru2Hgd2/pov and R = - a/3gd4/vK, 
are the Hartmann number squared and the Rayleigh number. In  the expressions 
for 7 and M ,  p is the magnetic permeability, and cr the electrical conductivity. 
The symbol V 2  denotes the Laplacian in x and y. 

The boundary conditions are: (a) the non-slip condition, ( b )  the condition of 
insulation a t  the wall, and (c) the continuity of H, at the wall, in which it is as- 
sumed to be zero. Thus they are 

w = 0, aslax = 0, and H = o at x = 1, (10) 

if the origin of the co-ordinates is located midway between the plates. 
The quantity h is in general complex. Since the principle of exchange of 

stabilities has been shown to be valid by Dunwoody, for neutral stability it 
can be taken to be zero. If, further, 

the equations (7), (8) and (9) can be reduced to the single equation inf(x), which 
is 

((0'- a')'- M2D2)f = Rf, (12) 

with D denoting dldx. The boundary conditions can be reduced to 

f = O  and ( D 2 - u 2 - M 2 ) D f = 0  at x = + l .  (13) 
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3. Solution for symmetric convection 
The system consisting of (12) and (13) admits even and odd solutions sepa- 

rately. There is no error of omission in Dunwoody's work for odd f, corresponding 
to antisymmetric convection. We shall concentrate on even f on symmetric 
convection. The secular equation for that has been correctly obtained by 
Dunwoody, and is 

(e; - a2 - M 2 )  el tanh el = (ei - a2 - M2) e2 tanh e2, (14) 
in which 

2s; = 2a2 + M 2  + B,  2ei = 2a2 + M 2  - B, B = ( M 4  + 4M2a2 + 4iR)a. (15) 

The solutions of (14) for M = 0 or for a = 0 obtained by Dunwoody are 
indicated in figures 1 and 2 by broken lines. They are without errors in so far as 
they satisfy (14). But the most unstable mode has escaped notice, and, as men- 
tioned in the introduction, many puzzling points raised by these broken lines 
demand explanation. Inspection of (15) shows that B = 0 satisfies (14). But 
this will not do, because the indicia1 equation of (12) then has a double root, and 
(14) must be modified because of the solutions in the form of x: times a hyperbolic 
sine. When the modification is made, it is found that B = 0 does not satisfy the 
secular equation. 

But, for any M whatever, the equations 

a=O and R=O (16) 

do satisfy (14). This indicates that R is small if a is non-zero but small. In  fact, 
as will be verified a posteriori, R = O(a2) for small a. Considering small u and 
any M small enough for a four-term expansion of tanhs, or of tanhe2 to be 
sufficiently accurate, we can calculate R from (14). We do not make any stronger 
assumption concerning M .  It may be greater or smaller than a, and M4 may be 
greater than R. It turns out that we never have to expand the radical equal to 
B in (15), because only B2 or its powers are involved after the factor B has been 
cancelled. The result in fact is 

- 30a2+ 10~4- 4d + + (M4- B2) [ - 5 2 + 3a2 - +'-a4 + M2- $+ H2u2 

-&(3M4+B2)] = 0, 

which involve R and R2, but no radicals. The final evaluation of R gives 

R = Aa2+Ba4+O(a6), (17) 

in which A = 315(105-42M2+ 17M4)-'-M2, 

B = (10 - 4 ~ 2 +  g ~ 4 ) - 1 {  - 10 + 1 2 ~ 2 -  ~ i w 4  + A (12 - y-w- A)) .  

For M = 0, (17) reduces to (4). For small M ,  both A and B increases with M .  
Although (1 7) has been obtained by taking only four terms in tanh el and tanh e2, 
and is therefore valid only for small values of M and a, the increase of A and B 
with M can be expected to hold for any M ,  however large, on physical grounds. 
Thus the intersection of the stability boundary with the plane M = constant C 
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is a curve embracing the R-axis, and doing so more and more closely as C 
increases. 

We have not evaluated R for very large values of M because there has been no 
need to do so. For large M series expansions of tanh and tanh e2 are of course 
impractical. A referee of this paper has shown by assuming M4 B R that R = Ma2 
for large M. This does not contradict what has been obtained and said above in 
the least. In  fact it confirms the statement that the stability boundary intersects 
the plane M = C in a curve that embraces the R-axis more and more closely as 
C increases. 

For M = 0,  (14) reduces to (3.14) in Dunwoody (1964), or 

5 tanh 5 = 5 tan 6, (18) 

with 

The (R, a )  curve for M = 0 is given in figure 1 in solid line. This has been obtained 
directly from (18) by numerical calculation, by insisting on 5 < &r. It is evident 
that it is not only generally more ‘critical ’ than the broken line, but gives a critical 
Rayleigh number far less than 237.6. For a = 0, the neutral-stability curve is 
simply R = 0, or the M-axis, as shown in figure 2. It is again evident that the 
broken line lies entirely within the unstable region. 

The solid line in figure 1 is based on figures kindly provided by Mr S. P. Lin 
and given in the following table: 

5 = (Ri + a2)6, < = (R6 - a2)6. 

u 0-5 1 2 3 

R 0.82 4.1 29.5 113.6 

To visualize the true stability boundary in the (R, a,  M)-space, one may 
consider i t  as an infinite sail. The M-axis is the mast and the R-axis the centre- 
line of the sail boat or the projection of the keel on the deck. The solid line 
in figure 1 is a curved boom. The positive direction of the R-axis points toward 
the stern. The broken line in figure 1 is a second curved boom attached to a curved 
secondary mast indicated by the broken line in figure 2. The ‘stern jib’ that 
extends from the second boom to the secondary mast is the stability boundary 
for one of the infinitely many higher and more stable modes. 

Before concluding, it is desirable to clarify the rather puzzling situation that 
the fluid can be unstable at zero Rayleigh number, even in the presence of a 
magnetic field. Inspection of (7)-(lo), with h = 0,  reveals that for a = 0 the 
solution is W = 0, H = 0, 8 = const. 

provided R = 0. For this mode there is no motion and no induced magnetic field, 
and the definition of 8 in (6) shows that T‘ is equal to a constant (since h = 0)  
times /3d. Now for a given fluid R can be zero if ,8 or d is zero. In  either case T‘ 
is zero. Hence the case of neutral stability corresponding to a = 0 and R = 0 
is characterized by the absence of motion, of induced magnetic field, and of 
induced temperature. This removes the apparent difficulty of accepting neutral 
stability at zero Rayleigh number, but also raises the question of whether a 
formal solution characterized by no perturbation of physical quantities at all is 

(19) 
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qualified to represent a situation of neutral stability. But then we have just shown 
that in the neighbourhood of such a seemingly insignificant solution are solutions 
indicating instability at any non-zero Rayleigh number, however small. 

We shall make the result R -+ 0 as a -+ 0 more palatable by showing that 
h is proportional to R. This is done in the following way. As has been said in the 
last paragraph, for a = 0 equations (19) hold. Let the constant for 8 be 8,. 
As R is increased slightly, T1 still must be zero for the reason stated before. But 
W and H will be different from zero, and 8 will be equal to 0, + 8,. Equations 
(7)- (9) become hW = -ROO+ W"+qM'H', 

PM, = 8;- w, 
PAH = qH"+ W'.  

Now since h = 0 a t  R = 0, we expect h to be small compared with 1 for small R. 
Thus these equations can be further simplified to 

(20) 0 = - R8, + W" + qM2H', 
m e ,  = 0;- w, 

0 = qH" + W'. 

From these it is immediately clear that W and H are proportional to R. In fact, 
on setting 

W = R W ,  and H = RH,, (23) 
we can write (20) and (22) as 

0 = -8,+ Vi+7M2Hi, 

0 = yH;+ w;, 
combination of which yields 

8, = yHr + 7M2H;. 

Odd as it may appear a t  first sight, this can be solved with (25 )  to satisfy the 
four boundary conditions on W and H in (10). The solution is simply? 

(271 I HI = A x  + B sin Mx,  

W,= -qH;+D, 
in which 

A = 8,(gM2)-1, B = -A(sinM)-l and D = yA(1-McotM). 

This in fact confirms the adequacy of (23). Now multiplication of (21) by 8, 
and integration between x = - 1 and x = 1 yield 

ZPM; = - oof w a x  = - R p , q a x ,  (28) 

since 8; vanishes at both limits. Multiplication of (24) by W, and integration 
between the same limits yield 

or, upon integration by parts and utilization of (10) and (25), 

t This demonstration is based on M + 0. That for M = 0 is similar. 



586 Chia-Shun Yih 

Substitution of (29) in (28) produces, finally, 

2PA@ = R [( W;)' + (T,LMH;)~] dx. (30) 

Hence h is proportional to R and is positive for any positive R, however small. 

4. Conclusions 

present or not: 
We are then in a position to conclude that, whether a magnetic field H, is 

1. Symmetric convection is more unstable than antisymmetric convection; 
2. The fluid is unstable for any non-zero Rayleigh number, however small; 
3. For any Hartmann number M ,  the most unstable mode corresponds to 

a = 0;  
4. The (R, a)  curve for neutral stability in a plane with constant M embraces 

the R-axis more and more closely as the value of M increases, giving a smaller 
and smaller region of instability but keeping zero as the critical Rayleigh 
number. 

Conclusion 3 is in agreement with Dunwoody's conclusion. The other con- 
clusions are new, and are at variance with the results of Dunwoody. All the 
conclusions are consistent with the results of Wooding (1960) for M = 0. 

This work is among the many researches sponsored jointly by the National 
Science Foundation and the Army Research Office (Durham). 
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